
Practical Data Science in 
Robotics using DataFusion
Timothy W. Saucer, Ph.D.

Dec 18, 2024

Presenter Name, Title

presenter.email@maymobility.com



1. Overview of robotics systems

2. Use Case Example

3. Common Problems and Approaches

4. Where DataFusion fits in

Agenda

MAY MOBILITY PROPRIETARY & CONFIDENTIAL

2



My background (briefly)
● May Mobility

○ Currently director for simulation and infrastructure
○ Heavily work in data engineering of features
○ Current main focus of using data to validate safety case
○ Prior: Autonomy engineer in decision making engine

● Soar Technology
○ Mostly worked on robotics projects for DARPA
○ Developed rust wrapper for cognitive architecture (soar)

● Dassault Systemes
○ Industrial robotics software (such as 6 DOF arms in an 

automotive plant)
● Ph.D. Physics - University of Michigan

○ Thesis used nature inspired search algorithms to optimize 
solutions in high dimensional parameter space

● US Navy - irrelevant, but some people say it’s interesting



Overview of Robotics Systems



Robotics Systems
● Talk is focused on modern robotic systems

○ Industrial robots (like 6 DOF manufacturing arms) 
don’t usually operate like this

● Typically consist of 1+ CPUs, 1+ GPUs, and multiple sensors
● Frequently a mixture of ethernet enabled devices and 

some connected to a single CPU
● All processes operating asynchronously, some with 

additional threading
● Communication is typically done through message 

passing infrastructure, such as ROS defined by:
○ Communication Layer
○ Message Definitions
○ Serialization Protocols

● Some processes work on a pub/sub approach, others on a 
request/response, and some a mixture

Typical node structure within a single 
CPU. Realistic systems often have 
multiple computers, each with tens to a 
hundred nodes.

Image courtesy Clearpath Robotics.



Data Offload
● Typically attach one or more nodes as loggers

○ This is a process that listens only and attempts to 
write the serialized data as fast as possible to a 
file(s)

● There may be no guarantees about the timing of 
messages

○ The current time for a process maybe:
■ A “trigger” based on a message received and 

it assumes that is the current time
■ An internal clock mechanism
■ A timing signal from an external source

● In the end you frequently have one or more log files that 
require some form of ingestion into your data analysis 
suite

○ Common log sizes are ~300-500 Gb/Hr of data

The logging node typically sits on one 
or more CPUs within the robotics 
system.

Image courtesy Clearpath Robotics.

Logger



Example Robotic System

Lidar

Lidar + 
Camera

Lidar + 
Camera

Camera

Internal
Cabin 
Sensors

Wheel Turn 
Actuator

Drive/Brake 
Actuator

Accelerometer

GPS



Use Case Example



Use Case: Cross Traffic Identification
● Define cross traffic identification as: For 

vehicles that are on the cross streets from 
ours, how far away they are from our vehicle 
when we get our first positive identification.

● Two useful, related metrics:
○ Distance from our vehicle to the 

entrance of the intersection when we 
get a positive ID X meters away.

○ When we are at the entrance to the 
intersection, the maximum distance 
away at which we get a positive ID.

● You may want to predicate these results on 
the type of vehicle (car, truck, bus, etc)

● Also useful is the distance of the first 
identification compared to the distance of 
the first positive ID

○ Far away tracks are hard to recognize

How far away do 
we identify them 
correctly?



Cross Traffic - Technical Approach
● Identify distance from ego vehicle to the intersection

○ Combine GPS data with map data
■ Requires identification of what is defined as the “entry” of the intersection

● Identify the “real” classification of the other agent
○ Since you are not trying to process in real time, search for the agent’s maximum likelihood 

classification
■ All robotics data are noisy

● Identify the time range for which the classification is stable and the same as the maximum likelihood
● Compute summary statistics predicated on things like

○ Type of agent based on maximum likelihood
○ Differentiability (how certain can you be you got it right)
○ Particular intersection

■ Bonus points to identify intersections that are significantly 
different from the norm

when it comes to robotics data



Common Problems and Approaches



Common Robotics Challenges
● Noisy data - Loss of signal - process crash, buffer full, weak connection, etc
● Getting the data into a data store

○ This is basically “just” a traditional computer science problem of converting bits of type X into bits 
of type Y

○ Naive approaches are typically to hand encode these
○ In practice, often requires building generators to enable scalability

● Transforms!
○ Sensors are “dumb” and put out what they see
○ Define a transform to go from the reference point of the robot to the sensor

■ You may have multiple reference transforms between one and the other and these may 
change dynamically

● Example: distance sensor on the end of a long arm with two joints along it
● Noisy data
● Spatial Analysis

○ This problem is more related to database approaches, not robotics in general
● Time Synchronization

○ Making sense of when the messages come in, and how to consistently apply timing information
● No, seriously, the data are noisy



Getting robotics data into a data store
● Robotics data are highly structured
● Two general approaches - sending messages via publish/subscribe or 

query/response
● Most difficult issue: How to convert the data into a usable format?

○ Should you try to ingest “raw”?
○ Can we automate the message translation process?
○ Where in your pipeline can/should you make the data more 

friendly to data analysis?
○ Trivial example: cartesian position (x, y, z) stored as a float[] in a 

message
■ We know a priori this is always a 3 element float, should we 

store this as a fixed length array element or should we 
store three columns pos_x, pos_y, pos_z?

● Real Time ingestion
○ Requires all messages to have an agreement about how timing 

information is stored (example: timestamp in std_msgs/Header)
● After the Fact ingestion

○ Usually you can use embeddings within the log file
○ Log file computer may be distant from the source, so you may 

need to account for this as well

sensor_msgs/Image

std_msgs/Header header
uint32 height
uint32 width
string encoding
uint8 is_bigendian
uint32 step
uint8[] data

gps_common/GPSFix

std_msgs/Header header
gps_common/GPSStatus status
float64 latitude
float64 longitude
float64 altitude
float64 track
...



Transforms
● Frequently your data comes “nearly” raw from the sensors
● Example: LiDAR

○ A spinning device that sends out laser beams and 
measures the time of flight for the returned signal.

○ This generates a “point cloud” of all of the returned signals
○ These are measured relative to where the LiDAR is 

mounted
● Transforms are typically defined as a rotation and translation to 

get from one coordinate frame to another
○ Do you translate first or rotate first? It matters.
○ Not everyone does it the same.
○ There are conventions, but not strictly followed
○ You must also track which frame is transformed from and 

to (some publish the inverse of what you need)
● Transform operations are not easily handled by things like 

DataFrame libraries or SQL
○ Minimum 7 entries to compute a transform: 3 for 

translation and 4 for rotation
○ The math is not trivial
○ Frequently you have multiple transforms to apply

■ Robotics tooling does this “built in”

"Your data cannot 
remain as it is. You 
must convert 
it—only then can 
you achieve 
greatness."



Spatial Analysis
● Spatio-Temporal Analysis is one of the most 

common tools roboticists need to use
● Examples:

○ Path intersection (in picture)
○ Projection onto a curved route
○ Time to intersection

■ Made more fun by varying 
acceleration profiles

● Robotics engineers have many tools to 
handle these, but they don’t always map well 
to database approaches

● Existing packages:
○ geopandas - by far the most used
○ Sedona - geo on PySpark, essentially
○ geoarrow-rs : newcomer and a 

member of the DataFusion community
● There is no native storage structure for geo 

data
○ Usually encoded as text (WKT) or binary 

(WKB)

At any given 
timestamp, 
what is the time 
to interception?



Time Synchronization
● On a distributed robotics system, there is a fundamental 

question of what time means
● Some common approaches:

○ The local time of the computer for which the data 
were generated

○ The time embedded within a message that 
triggered a process to run

○ The time of receipt of a message according to a 
specified computer (such as the logger)

○ The time specified by a time server at which a 
message was published

● This is one of the most important features with the data 
from a robotics system. How we organize data along 
temporal dimension will impact nearly all analysis.
○ You must get this right. 

The Persistence of Memory by 
Salvador Dali



Noisy Data
Tim’s opinionated view:

To be successful in robotics, you must cultivate an attitude 
of distrust of the data.

● Thresholding does not work due to boundary effects
○ Smoothing helps
○ Dynamic boundaries is a more robust solution

● Build in detections for known problems such as loss of data 
and duplicate data

○ Duplicate may not be exactly duplicate, so frequently 
need more nuance, such as some fields to ignore

● Build in outlier detections into all data analysis workflows
○ Don’t tack it on at the end, make it part of your flow
○ Rust got a huge win from treating errors as part of 

the normal flow. Can we do the same in data?
● How to handle errors in the data is a top line problem, so 

make it front and center of your solution
○ When reviewing results, explain the reasoning for 

acceptance/rejection criteria



Where DataFusion Fits In



DataFusion for Robotics Data Science
● Python is the language for Data Science, almost exclusively with DataFrame APIs

○ Overwhelmingly: PySpark for scale, Pandas for single node
● For DataFusion to compete it must have comparable functionality and some clear advantage

Tim’s Opinionated View:
Rust backed python UDFs is the killer feature for doing robotics data science in DataFusion.

Reasoning:
● Roboticists and Data Scientists have different skill sets
● Rust UDFs can be written in a way that Roboticists understand (ideally by Roboticists)
● Package up a set of reusable message oriented rust backed UDFs as an analytics toolkit
● Data Scientists can leverage this toolkit to get:

○ Highly performant functions that operate at native speed
○ Abstract away the portion of the problem that does not match their skill set

But to win, we need distribution. Under heavy development:
● ballista
● datafusion-ray

Abstraction will set you free.



How DataFusion might address…
● Getting the data into a data store

○ I don’t think it impacts here, but my work on DataFusion led me to design an ingestion system that 
is saving so much money it pays my entire salary

● Transforms
○ Easy win here - These are trivially implemented in Rust
○ Good crates already exist - it’s simply a matter of data agreements about struct/column layout

● Spatial Analysis
○ Geo-arrow is a top contender to win here
○ Ideally we can build in extension types, but this could break workflows

■ Suppose you want to read from a table which has these extension types but you aren’t using 
those columns. Do you have to still load in the extensions to your workflow?

● Time Synchronization
○ Potentially a win by using a user defined async join?
○ We currently have a process to merge, sort on a time column, fill forward empty data

■ OOM problems on large data sets, so still needs work
○ Still needs more thought

● Noisy Data
○ User defined window functions!



Questions?


